

Can Social and Emotional Learning Competencies Protect Teachers?

Longitudinal Associations Between Social and Emotional Learning Competencies and Teacher Victimization Among Chinese Teachers

Presenter: Chun Chen, Ph.D.

Co-Authors: Chunyan Yang^{2,} Jin Hyung Lim³, Yijing Zhang^{2,} Zhaojun Teng⁴

² Chinese University of Hong Kong, Shenzhen; ² University of Maryland, College Park; ³ University of California, Berkeley; ⁴ Southwest University, China

Teacher Victimization in China

Rising Incidents, Limited Attention

- Over ⅓ of Chinese teachers have experienced some forms of aggression in the past year (Yang et al., 2023)
- Driven by academic pressures and performance-related conflict
- Shifts in teacher-parent power dynamics in recent years

Teacher Victimization: Definition and A Path Forward

Definition: perceived threats or actual experiences of violence by teachers in schools (Espelage et al., 2013).

Social and emotional learning (SEL): effective for bullying prevention for students, but how about teachers? (Chen et al., 2024; Yang et al., 2020; Zhang & Chen, 2023)

Question: What's the relationship between teacher victimization and their SEL competencies?

Association between TV and Social and Emotional Learning (SEL) Competencies

Teacher victimization → **SEL Competencies**

• **Theory**: Attribution Theory (Weiner 1986a,b): Teachers may blame their own SEC for TV.

SEL Competencies → **Teacher Victimization**

- **Theory**: Learned Helplessness theory (Maier & Seligman, 1976): Repeated TV can lead to passivity and self-blame.
- Empirical evidence: High SEL → better regulation, conflict resolution, and fewer victimization experiences (Zych et al., 2019).

Research Gaps

- Most studies are cross-sectional.
- Limited research to hear Chinese teachers' voices with unique challenges (e.g., longer working hours, blurred line between work and life).
- Need to understand causal relationships and directionality between Teacher SEC and TV and differentiate between trait and state.

Main Research Questions

- Do Stronger SEL competencies help protect teachers from victimization?
- Do experiencing victimization diminish their social and emotional competencies over time?

Approaches:

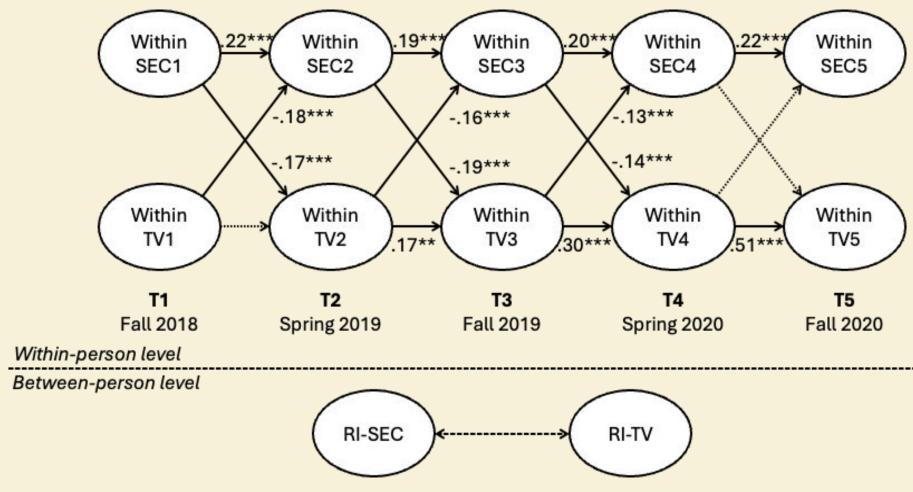
- 1. Examine bidirectional associations between teachers' SEC and TV.
- 2. Distinguish between-person (trait) vs. within-person (state) effects using RI-CLPM.

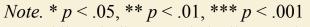
Methods

Design: 5-wave longitudinal study (2018–2020, 6 months apart).

Participants: 643 Chinese teachers (Mage = 35.7; 68.5% Female).

Measures:


- Chinese version of Delaware Social and Emotional Competencies Scale (SECs)—Teacher/Staff (Bear et al., 2016)
- Multidimensional Teacher Victimization Scale (MTVS; Yang et al., 2019)


Covariates: years of teaching at T1, school level (middle and high school), gender, and ethnicity (Han = 0, minority = 1).

Data analysis: Random Intercept Cross-Lagged Panel Model (RI-CLPM)

Results: Longitudinal Associations Between SEC and TV

Dotted lines indicate statistically non-significant paths (p > .05).

Take-Away Summaries

- Reciprocal relationships between TV and SEC.
- No significant cross-lagged effects during T4–T5.
 - Due to COVID disruption.
- No significant between-person association between SEC and TV.
 - within-person change over time matters.

Discussion

- SEC and TV influence each other over time.
- SEC has a state trait. It can change within individual. Individual changes in SEC matter.
- Raise awareness on TV.
- Impacts of COVID-19 disrupted protective mechanisms.

Limitations & Future Directions

- Generalizability across schools and cultures?
- Stories behind?
- Any key environmental factors (e.g., school climate)?

Some Future and Ongoing Projects: Empowering Teachers Through SEL Practice

Teachers as SEL Participants, Not Just Implementers

- SEL training for teachers should include personal engagement, not just delivery methods.
- Teachers are encouraged to practice SEL strategies during training to enhance job satisfaction and social and emotional awareness.

Personal SEL experience helps teachers understand its value and apply it more meaningfully in classrooms.

"I feel I have personally learned a lot through this process, particularly about gratitude."

References

Bakker, A. B., & Demerouti, E. (2017). Job demands-resources theory: Taking stock and looking forward. Journal of occupational health psychology, 22(3), 273.

Bear G., Yang C., Harris A., Mantz L., Hearn S., Boyer D. (2016). Technical manual for Delaware school survey: Scales of school climate; bullying victimization; student engagement; positive, punitive, and social emotional learning techniques; and social and emotional competencies. *Delaware Positive Behavior Support and School Climate & Student Success Projects*.

Bronfenbrenner, U. (1979). The ecology of human development: Experiments by nature and design. Harvard university press.

Chen, C., Yang, C., Nie, Q., & Teng, Z. (2024). The association between bullying victimization and problematic Internet use: The role of social-emotional learning (SEL) competencies. *School Psychology Review*, *53*(5), 459–474. https://doi.org/10.1080/2372966X.2023.2263812

Espelage, D., Anderman, E. M., Brown, V. E., Jones, A., Lane, K. L., McMahon, S. D., ... & Reynolds, C. R. (2013). Understanding and preventing violence directed against teachers: Recommendations for a national research, practice, and policy agenda. *American Psychologist*, 68(2), 75

Lazarus, R., & Folkman, S. (1985). Stress and coping. New York, 18(31), 34-42.

Maier, S. F., & Seligman, M. E. (1976). Learned helplessness: theory and evidence. Journal of experimental psychology: general, 105(1), 3.

Weiner, B. (2014). Searching for the roots of applied attribution theory. In Attribution Theory (pp. 1-13). Psychology Press.

Yang, C., Chan, M. K., & Ma, T. L. (2020). School-wide social emotional learning (SEL) and bullying victimization: Moderating role of school climate in elementary, middle, and high schools. *Journal of School Psychology*, 82, 49-69. https://doi.org/10.1016/j.jsp.2020.08.002

Yang, C., Fredrick, S. S., Nickerson, A. B., Jenkins, L. N., & Xie, J. S. (2019). Initial development and validation of the Multidimensional Teacher Victimization Scale. *School psychology*, 34(2), 244.

Zhang, Y., & Chen, J. K. (2023). Emotional intelligence and school bullying victimization in children and youth students: a meta-analysis. *International journal of environmental research and public health*, 20(6), 4746.

Zych, I., Ttofi, M. M., & Farrington, D. P. (2019). Empathy and callous—unemotional traits in different bullying roles: A systematic review and meta-analysis. *Trauma, Violence, & Abuse, 20*(1), 3-21.

Results:

Table 1

Model Fit Statistics

	$\chi^2(df,p)$	CFI	TLI	RMSEA [90%CI]	SRMR	ΔCFI	Comparison
M1	88.276 (61, .013)	.968	.951	.037 [.019, .052]	.032	e=	-
M2	151.637 (67, < .001)	.916	.881	.057 [.044, .070]	.048	052	M1
M3	90.879 (64, .015)	.969	.954	.036 [.018, .050]	.032	.001	M1
M4	105.031 (70, .004)	.959	.944	.039 [.024, .053]	.035	010	M3
M5	95.339 (68, .016)	.970	.958	.034 [.016, .049]	.034	.001	M3
M6	99.087 (72, .019)	.970	.961	.033 [.015, .047]	.034	< .001	M5

Note. M1 = baseline model without any constraints, M2 = constrained all the autoregressive coefficients over time based on M1, M3 = unconstrained TV's autoregressive coefficients based on M2, M4 = constrained all the cross-lagged effects over time based on M3, M5 = unconstrained the cross-lagged effects from T4 to T5 based on M4, M6 = constrained all the covariances over time based on M5

Results:

Table 2Parameter Estimates of the RI-CLPM

В	SE	β	Z	р
.211	.041	.217	5.173	< .001
.211	.041	.192	5.173	< .001
.211	.041	.202	5.173	< .001
.211	.041	.220	5.173	< .001
.028	.061	.028	.460	.646
.142	.052	.171	2.730	.006
.437	.090	.298	4.837	< .001
.544	.054	.507	10.068	< .001
213	.049	165	-4.366	< .001
213	.049	192	- 4.366	< .001
213	.049	144	-4.366	< .001
009	.086	006	107	.915
130	.029	176	- 4.448	< .001
130	.029	157	- 4.448	< .001
130	.029	125	-4.448	< .001
034	.041	051	842	.400
	.211 .211 .211 .028 .142 .437 .544 213 213 213 009 130 130	.211 .041 .211 .041 .211 .041 .211 .041 .211 .041 .028 .061 .142 .052 .437 .090 .544 .054 213 .049213 .049213 .049130 .029130 .029130 .029130 .029	.211 .041 .217 .211 .041 .192 .211 .041 .202 .211 .041 .220 .028 .061 .028 .142 .052 .171 .437 .090 .298 .544 .054 .507 213 .049165213 .049192213 .049194009 .086006130 .029176130 .029157130 .029125	.211 .041 .217 5.173 .211 .041 .192 5.173 .211 .041 .202 5.173 .211 .041 .220 5.173 .211 .041 .220 5.173 .028 .061 .028 .460 .142 .052 .171 2.730 .437 .090 .298 4.837 .544 .054 .507 10.068 213 .049165 -4.366213 .049192 -4.366213 .049144 -4.366009 .086006107130 .029176 -4.448130 .029157 -4.448130 .029125 -4.448

Results:

Correlations ^c					
T1 SEC ↔ TV	020	.004	129	-4.658	< .001
T2 SEC \leftrightarrow TV	020	.004	143	-4.658	< .001
T3 SEC \leftrightarrow TV	020	.004	159	-4.658	< .001
$T4 SEC \leftrightarrow TV$	020	.004	106	-4.658	< .001
T5 SEC \leftrightarrow TV	020	.004	111	-4.658	< .001
Intercept-Intercept Correlations					
$RI\text{-}SEC \leftrightarrow RI\text{-}TV$	009	.006	180	-1.461	.144
RI-SEC Regression Coefficients					
Years of Teaching	.002	.002	.066	1.279	.201
Gender (Female)	005	.033	008	153	.878
Ethnicity (Minority)	.056	.097	.029	.581	.561
School Level (Middle)	032	.038	047	830	.407
School Level (High)	059	.035	100	-1.709	.087
RI-TV Regression Coefficients					
Years of Teaching	.001	.001	.062	.840	.401
Gender (Female)	117	.029	298	-3.972	< .001
Ethnicity (Minority)	097	.086	080	-1.120	.264
School Level (Middle)	.076	.034	.182	2.264	.024
School Level (High)	.032	.030	.086	1.041	.298

Note. SEC = social and emotional learning competencies; TV = teacher victimization; T1-T5 = Time 1-Time 5; RI = random intercepts.

aconstrained the autoregressive paths of SEC to be equal across times.

^bconstrained the cross-lagged paths to be equal across times except for those from T4 to T5.

constrained the within-wave correlations to be equal across times.